
Learning to Design 3D Printable Adaptations
on Everyday Objects for Robot Manipulation

Michelle Guo1, Ziang Liu1, Stephen Tian1, Zhaoming Xie1, Jiajun Wu1, and C. Karen Liu1

Abstract— Advancements in robot learning for object ma-
nipulation have shown promising results, yet certain everyday
objects remain challenging for robots to effectively interact
with. This discrepancy arises from the fact that human-designed
objects are optimized for human use rather than robot manip-
ulation. To address this gap, we propose a framework to auto-
matically design 3D printable adaptations that can be attached
to hard-to-use objects, thus improving “robot ergonomics”. Our
learning-based framework formulates the adaptation design
and control as a dual Markov decision process and is able
to improve robot-object interactions for various robot end
effectors and objects. We further validate our designs in the real
world with a Franka Panda robot. Please see the supplementary
video and https://object-adaptation.github.io for
additional visualizations.

I. INTRODUCTION

Recent advancements in robot learning algorithms for
object manipulation have yielded promising results [1]. Yet,
many objects remain challenging for robots to effectively ma-
nipulate or utilize [2], including everyday objects commonly
found in household environments—an important application
of robot learning [3]. To circumvent this problem, researchers
may selectively focus on robot-friendly objects, or instrument
them in ways that facilitate successful interactions, such as
by attaching wrappers around thin handles or making object
states more accessible (e.g., initializing a laptop lid slightly
open for easier laptop opening).

Why do robots struggle with the manipulation of everyday
objects? One compelling explanation is that the design and
creation of everyday objects have historically been driven
by human needs and intended for human use, not robots.
Therefore we hypothesize that the primary obstacle lies in
the grasp affordances of these objects, which are designed for
human hands rather than the robot end-effectors commonly
employed today. To enable robots to interact seamlessly
with a wider range of objects, it is crucial to address the
disparity between human-designed objects and the current
morphologies and control capabilities of robots.

Promising avenues for bridging this gap include re-
designing either the robot end-effector or the object itself;
however, these approaches suffer from practical limitations.
Recent methods for end-effector design [4], [5] require
frequent switching between specialized “hands” tailored for
different objects, compromising long-horizon task efficiency.
On the other hand, re-designing the object [6], [7] entails
inventing a second set of objects optimized for robotic use,
creating geometries and kinematics distinct from their human
counterparts but serving similar functions. This approach is

1Stanford University

(a) Human adaptations. (b) Robot adaptations.

Fig. 1: Inspired by human examples of adaptation (a), we
focus on adapting objects for robots to use in an automated
way via learning (b).

resource-intensive due to the large design space required to
flexibly explore and discover the optimal forms that support
the desired functions. Moreover, the notion of maintaining
separate sets of objects for robots and humans contradicts
the goals of human-robot interaction, where robots must still
handle the diverse array of human objects encountered in
tasks like hand-over interactions [8].

Drawing inspiration from human-computer interaction [9],
[10], [11], [12] and human ergonomics [13], [14], we exam-
ine the problem through a different lens, by viewing this as
a “robot ergonomics” problem [15], [16], [17]. Rather than
resorting to replacing robot end-effectors or entire objects,
we argue for a simpler and more practical solution: designing
3D printable adaptations that can be attached to hard-to-use
objects. For example, humans often adapt objects or tools
when the original design is inadequate for certain users or use
cases (e.g., attaching a larger zipper pull or affixing a rubber
grip to pencils for toddlers to write; see Figure 1a) [18], [19],
[20]. Similarly, adaptations can enhance robot ergonomics
while leaving the rest of the object unchanged, allowing
robots to use human objects more effectively (Figure 1b).
This approach has the potential to expand the set of human
objects that robots can use, and ultimately help bridge the
design gap between robots and humans. However, current
approaches for designing adaptations [10], [17] require sig-
nificant human intervention to define and customize the
designs, which is cumbersome and difficult to scale.

To tackle this issue, we adopt a learning-based approach
to automatically design object adaptations for robot mor-
phologies, while leveraging just task progress as the only
learning signal. Because the adaptation design and the way
it is used are interdependent, we formulate the design and
control as a dual Markov decision process (MDP) and adopt
a reinforcement learning framework to optimize them jointly.
Our design adaptation allows for a simple and general reward

https://object-adaptation.github.io


function agnostic to the choice of end-effector or task. We
validate our framework by learning design and control in
simulation with a Franka Panda robot and a Barrett three-
finger hand, using objects that are hard to manipulate without
object adaptation, such as a bucket handle or a box.

In summary, the contributions of our work include:
• Propose a new problem setting, object adaptation, for

robotic manipulation,
• Develop three design parameterizations and six simulated

robotic manipulation environments for object adaptation,
• Demonstration of the effectiveness of object adaptation,

with analyses across different design spaces and ap-
proaches, and

• Evaluation on real-world hardware (Franka Panda robot)
with physically fabricated adaptations.

II. RELATED WORK

End-effector and tool design. Standard parallel-jaw grip-
pers cannot stably grasp objects with arbitrary geometries.
Several works attempt to overcome this issue by developing
automated methods for designing robot morphologies spe-
cialized to different tasks or objects [4], [5], [21]. However,
deploying these methods in practice requires end-effectors to
be specially instrumented before manipulating each object of
interest, which is time-consuming.

Another approach is designing or constructing additional
tools to provide agents the necessary affordances [6], [7],
[22]. However, existing tool design works do not address how
robots should grasp tools, and assume that a tool is already
grasped in the hand when execution begins. Conversely, in
this work we consider how adaptations should be designed
and optimized to enable objects to be easily grasped by the
agent’s original end-effector.

Extrinsic dexterity, or the use of external forces or contacts
to enable manipulation, is another avenue towards exposing
grasp affordances [23], [24]. While extrinsic dexterity can be
effective when the external environment enables appropriate
behaviors, our approach directly adapts objects to be easier to
use in any environment, and can also be used in combination
with extrinsic dexterity methods.

Object adaptations. Prior works have studied the effect
of tool or object design on comfort and effectiveness in
the context of human ergonomics [13], [14]. This motivates
us to apply the same concept to robots, known in the
literature as “robot ergonomics” [25], [15], [16], [17], but
we take a learning approach to design that requires minimal
human intervention as opposed to previously studied manual
designs. Shao et al. [26] apply deep reinforcement learning
to learn scaffolding for learning robotic manipulation, but
only allow the pose of the fixture to be learned, while we
parameterize the geometry. Furthermore, in our work the
designs are used directly to improve task feasibility rather
than as aids of learning progress.

In this work, we use 3D printing to rapidly fabricate
designed adaptations. A variety of methods have been de-
veloped to extend, modify, or adapt existing objects via
3D printing [9], [10], [11], [12], but pursue the orthogonal

direction of improving the printing and fabrication process
itself, while we focus on learning the designs themselves.

III. LEARNING TO DESIGN OBJECT ADAPTATIONS

A. Problem definition

The objective of our study is to create object adaptations
that can expand the set of objects that an agent can interact
with in the world. To accommodate for various design and
control spaces, we represent the agent’s environment as a
dual Markov decision process (MDP), consisting of a design
MDP and a control MDP, visualized in Figure 2. During the
design MDP, a design action vector applies a transformation
to the default object adaptation. The transformed adaptation
is then attached to the object, and the end effectors are
commanded by the control policy during the control MDP
to manipulate the objects. Given this dual MDP, we can
optimize the design action and control policy jointly using
reinforcement learning algorithms.
Design MDP. Each episode begins in the design MDP. The
state space SD for the design MDP specifies the shape
of the adapted object and is initialized with default shape
parameters. While the design MDP can contain multiple
design steps, in practice we employ a single environment
transition. Thus, we only require learning a design action
vector aD ∈ AD (instead of a design policy) that specifies
the design parameters that will be used to transform the
shape parameter. During the design MDP, we assign zero
reward; the usefulness of a design is determined solely by
task progress during the control MDP. This means that any
signal for the utility of an adaptation depends only on how
well the robot can use it to solve the task.
Control MDP. We enter the control MDP after the end of
the design MDP. The control action aC ∈ AC represents
the control command to the robot’s end-effector. The control
policy πC(a

C |sC) will generate the control action based on
sC ∈ Orobot × Oobject × SD, where Orobot is the state
of the robot including end-effector position and orientation
qend = [pend,θend], gripper state sgripper ∈ {close, open},
and binary flags sfinger ∈ {0, 1}Nfinger indicating which of the
Nfinger fingers are in contact. Oobject is the full state qobject
of the object to be manipulated, including its position and
orientation, as well as the joint states if articulated joints are
present. The design parameter sD ∈ SD from the design
MDP is also used to allow the control policy to adapt its
strategy to different design parameters. The control policy
also receives a task reward rt after each control time step t.
The control MDP ends when the task is completed or when
the time limit of an episode is reached.

B. Instantiating our framework

Design action. Given an articulated object we wish to
manipulate, we first identify the link with which the robot’s
end-effector needs to interact (e.g., the handle on a water
bucket or the lid of a box). Then, the adaptation shape is
generated based on the design action and is attached on the
link. We explore three design parameterizations. Primitives



control policy

… …

Control MDPDesign MDP

control policy

Environments / Tasks

Franka-Bucket Franka-Drawer Franka-Box

Barrett-Bucket Barrett-Drawer Barrett-Box

Episode Rollout

Phase I: Designoriginal mesh deformed mesh

deform
action

scale
action

apply 
deformation

scaled mesh

handle design

mesh design

Design Space Parameterizations

primitive design

Fig. 2: Overview of our framework. We represent the agent’s environment as a dual Markov decision process (MDP) (top
box), consisting of a design MDP (top box, left) and control MDP (top box, right). During the design MDP, a design action
vector aD ∈ AD applies a transformation to the default object adaptation. The transformed adaptation is then attached to
the object, and the end effectors are commanded by the control policy during the control MDP to manipulate the objects.
Given this dual MDP, we optimize the design action and control policy jointly using reinforcement learning algorithms. We
also show different design parameterizations (bottom left box) and different environments and tasks that we evaluate our
framework on (bottom right box).

and handles are biased towards designs frequently seen in the
real world, and meshes allow flexibility for the control policy
to explore more broadly. Fig. 2 illustrates some examples of
the effect of the design action. We describe them in detail
below:
• Primitives: We use cylinder and cuboid (with a square

base) as primitive shapes for the adaptation. The design
action is 3-dimensional, where the first dimension chooses
the appropriate primitive and the rest modify the parame-
ters of the primitives, i.e., the length and width a, b of the
cuboid and the radius and length r, l of the cylinder.

• Handles: To generate shapes more commonly seen in the
human environment, we initialize the adapted object to
be handle-like with the shape of a half-torus. Specifically,
given a point in the object coordinate p = [x, y] on the
surface we want to attach the adapted object, we define
a radius rmajor, and attached two circles of radius rminor
at location [x − rmajor, y] and [x + rmajor, y] (Figure 2).
The design action is 2-dimensional and contains rmajor
and rminor. A half-torus is then generated using these two
parameters and attached to the object at the two endpoints
of the half-torus.

• Meshes: We initialize the adaptation as a level-zero ico-
sphere, with 12 vertices V ∈ R12×3. The dimensionality
of the design action is 37, where the first 36 dimensions
specify the amount of deformation ∆V desired, and the
last dimension applies scaling λ to the mesh to adjust
its size. The final mesh vertices V ′ are computed as
V ′ = λ(V +∆V ). To avoid self-intersections and highly

non-convex shapes, we compute the convex hull of the
deformed mesh to be the final mesh.

Control action. The action space during the control MDP
consists of a delta (change in) pose for the end-effector of
the robot as well as the gripper state. Specifically, given the
current pose of the robot end-effector qend = [pend,θend]
that specifies the current position and orientation of the
robot end-effector in the world frame, the control action
aC = [δpend, δθend, agripper], where [δpend, δθend] predicts
a desired displacement of the end-effector pose. The de-
sired next end-effector pose is then computed via qd

end =
[pend + δpend,θend + δθend]. A proportional-derivative (PD)
controller then drives the end-effector to the desired pose.
agripper ∈ {close,open} predicts the binary gripper state
to determine whether to open or close the gripper and another
PD controller drives the gripper to the desired open or close
state.

Reward design. During the control MDP, we use a dense
reward function (following [2]) to guide the policy to accom-
plish the desired task by manipulating the adapted object.
This reward function is task and end-effector agnostic, and
requires knowing only the final goal state of the object.
We decompose the task into two phases. In the first phase
(Approaching Phase), the agent is rewarded for moving the
robot end-effector toward the adaptation or the object part
to be manipulated (e.g., bucket handle, box lid). In the
second phase (Manipulation Phase), the agent is rewarded
for moving the adapted object toward a target state.



Throughout the whole episode, the following reward is
used to encourage the end-effector to stay close to the link
to be manipulated:

robj = − min
p∈Plink

(∥pend − p∥),

where we penalize the minimum distance of the end-effector
to all the points Plink on the link we want to manipulate.
During the Approaching Phase, this rewards the agent to
move the robot end-effector toward the link, and during the
Manipulation Phase, this penalizes the agent for moving the
end-effector away from the link, e.g., dropping the object
while lifting it up.

We also use a “holding” detector to determine whether the
gripper is in contact with the link. In particular, the detector
returns true when∑

finger

IsContact(finger, link) = Nfinger,

where IsContact is a boolean function that returns
whether a given finger of the end-effector is in contact with
the desired link and Nfinger is the total number of fingers.
This encourages the gripper to close around the link once
the end-effector gets close enough. A reward of rholding = 10
is rewarded the first time holding is detected, and the MDP
transitions from the Approaching Phase to the Manipulation
Phase.

During the Manipulation Phase, in addition to robj, we also
supply a progress-based reward

rtarget = 100(∥sobj − starget∥ − ∥sprev
obj − starget∥),

where starget is the target state of the object, and sobj and
sprev

obj is the object state at the current and previous time step.
This encourages the agent to move the object toward the
target state.

When the object state is within a threshold distance from
the target state, the task is considered finished and the
episode ends with a completion bonus of rsuccess = 100.
Otherwise, the episode runs until a time limit of tlimit = 5
seconds is reached and the task is considered failed.

Reinforcement learning. At each training iteration we col-
lect interaction trajectories that span the design and con-
trol MDP. The design action vector and the control pol-
icy are then optimized using Proximal Policy Optimization
(PPO) [27].

IV. EXPERIMENTS

In this section, we present our experimental evaluation
of the proposed framework in both simulation and the real
world. We aim to address the following key questions: i)
Does object adaptation significantly improve task perfor-
mance? ii) Which design parameterizations play a larger
role in the effectiveness of adaptations for each task? iii)
Do object adaptations translate to real-world environments?

A. Environments

We evaluate our framework in six manipulation environ-
ments, visualized in Figure 2, that cover three tasks (Bucket,
Drawer, Box) and two end-effectors (a 7-DoF Franka Panda
robot arm equipped with its standard parallel-jaw gripper
(PJG), and a three-finger Barrett hand). The tasks feature
articulated objects commonly present in household envi-
ronments, but challenging for non-dexterous end-effectors
to manipulate. We implement the environments using the
PyBullet simulation engine [28]. We describe the tasks
below:

• Bucket. The robot must lift a bucket from the ground.
The challenge lies in the thin bucket handle, initially flush
against the side of the bucket. The robot must exert an
upward force on the handle, creating space between the
bucket and the handle, and then lift the handle, possibly
by establishing force closure with the handle or caging the
handle by hooking its fingers around it. The task progress
is measured by the distance between the bucket handle and
the desired goal height, and is considered solved when the
bucket handle is lifted to a sufficient height.

• Drawer. The robot must pull open a drawer (without an
explicit handle) from a closed configuration. Task progress
is quantified by the extent to which the drawer is open,
and the task is considered successfully completed when
the drawer is open to a certain extent.

• Box. The robot’s objective is to open a closed box. Open-
ing the box poses a challenge for the robot gripper since it
lacks an explicit handle or knob. Humans may solve this
task by pushing the box lid upwards with their fingers,
which is a strategy unavailable to PJGs and difficult to
discover with RL for the Barrett hand. Task progress is
indicated by the change in the lid angle, and the task is
considered successfully completed when the lid is open to
90 degrees.

Assets. We use models of articulated objects from the
PartNet-Mobility dataset [29]. To ensure realistic object sizes
relative to the robot, we manually annotate the object scales.
The initial state distribution is designed to prevent self-
penetration or collision between the object, the attached
adaptation design, and the robot. To obtain the collision
geometry, we employ Volumetric Hierarchical Approximate
Decomposition (V-HACD) [30]. We attach the adaptation
design to the object by creating a new joint in the object’s
Unified Robotics Description Format (URDF) file, connect-
ing the parent link (e.g., bucket handle, box lid) to the child
link representing the adaptation design.

B. Task performance evaluation with and without adapta-
tions

To assess the impact of object adaptations on task perfor-
mance, we perform experiments with varying combinations
of method, design parameters (primitive, handle, mesh), end-
effector (Franka or Barrett), and task. Methods include our
proposed system (“Ours”), a “Random” baseline method,



Fig. 3: Learning curves for varying design strategies. Each plot corresponds to one of the six environments that we evaluate
our framework on. We show results for our method (“Ours”) vs. random designs (“Random”), across different design
representations (“Primitive”, “Handle”, and “Mesh”). We additionally compare against no adaptation baselines, as well as a
CMA-ES baseline that directly optimizes the design and control actions. Shaded regions indicate standard error across a
minimum of three random seeds.

where a design is sampled uniformly from the design space
and is fixed throughout training, and a “No Adaptation”
baseline method where the control policies learn to manipu-
late the original object without adaptation. We also compare
against CMA-ES, which optimizes the design and control
actions directly for the reward function.

Figure 3 presents the training curves, showcasing the
improvements achieved with adaptations compared to the
no-adaptation baseline. The learned adaptation designs for
different end-effectors and design representations are shown
in Figure 5. For all of the tasks and all design parameteriza-
tions, optimized designs outperform random designs, except
for Barrett-Drawer with Mesh. This indicates our dual MDP
is able to efficiently find design parameters that can improve
task performance. Compared to the CMA-ES baseline, our
method achieves better converged performance and sample
efficiency.

We also note that different design parameterizations can
be more effective depending on the task. For example, the
primitive parameterization performs better for the Drawer
task, while the handle parameterization performs better for
the Box task. In all cases, the mesh parameterization per-
forms worst. This is expected as it has more parameters
to optimize and more easily succumbs to local minima.
However, it is the most flexible parameterization, and can
in principle produce a superset of primitive or handle shapes
given the right optimization techniques. Further exploration
of how to better optimize mesh parameters is an exciting
direction for future work. It is also worth noting that the
Barrett hand can occasionally learn to complete the tasks
without adaptation. This is because the Barrett hand is closer
to the human hand in terms of morphology and capability
compared to the parallel gripper. However, the Barrett hand
can still use adaptation in order to learn faster.

Finally, we analyze the effect of physical parameters on
the performance. We evaluate the setting where the friction
coefficient between adaptation and the end-effector is re-
duced, and show the results in Figure 4. We find that, with
the task being more difficult, the gap between “Ours” and
“Random Design” is much larger than the gaps in Figure 3.
We also evaluate a two-stage optimization procedure, where
design and control are optimized separately. “Control UP”
corresponds to training a universal policy (UP) for control
with PPO, where every episode is initialized with a random
design. This tries to learn a control policy that can use any
design. “Control UP + CMA-ES” uses CMA-ES to optimize
the design parameters. The reward is obtained by rolling out
a pre-trained control UP on each candidate design. While
separate optimization of design and control also solves the
task, our method achieves higher sample efficiency.

C. Real world evaluation

To validate the effectiveness of the designed adaptations
in real-world scenarios, we roll out the control policies
in simulation for all the tasks and optimized designs, and
execute the joint trajectories of the Franka Panda robot arm
and gripper in the real world. We track objects with the
AprilTag fiducial system [31], using two RealSense D415
RGB-D cameras in order to handle potential self- and robot-
arm-occlusions of the object. The adaptation links are 3D
printed using Creality’s Ender 3 and 5 fused deposition
modeling (FDM) 3D printers, with Polylactic Acid (PLA)
filament, and physically attached to the objects. Real-world
rollouts are shown in Figure 6, and the success rates are
reported in Table I. Videos of the real-world rollouts can be
found in the supplementary video. Without adaptations, the
robot fails to complete the tasks. Meanwhile, all the designs
optimized from the primitive and handle parameterization
can be used by the physical Franka Panda robot. However,



Fig. 4: Learning curves for the low-friction setting. The gap
between “Ours” and “Random Design” is much larger than
the gaps in Figure 3. “Control UP” corresponds to training
a universal policy (UP) for control with PPO, where every
episode is initialized with a random design. This tries to
learn a control policy that can use any design. “Control
UP + CMA-ES” uses CMA-ES to optimize the design
parameters. The reward is obtained by rolling out a pre-
trained control UP on each candidate design. Shaded regions
indicate standard error across a minimum of three random
seeds.

Fig. 5: Visualization of optimized designs. Each image
shows an optimized design (yellow shape) that is generated
by our method. The left panel corresponds to the Bucket
task, the middle panel corresponds to the Drawer task, and
the right panel corresponds to the Box task. Rows represent
different hands (Franka and Barrett), and columns repre-
sent different design parameterizations (primitives, handles,
meshes).

the mesh design only works for the bucket and box but not
for the drawer task. The shapes of the meshes optimized
for the drawer are irregular and the control policies utilize
unrealistic frictions to accomplish the tasks in simulation,
while in the real world, it can only have partial success by
pulling out roughly 30% of the desired drawer length.

V. CONCLUSION

In this paper, we propose a framework to enable robots to
effectively manipulate everyday objects designed for human
use. By approaching the problem from a “robot ergonomics”
perspective, we propose a learning-based approach for auto-
matically designing object adaptations that better fit robot
affordances. Our simulated studies and real-world experi-
ments demonstrate the effectiveness of our approach in the
context of robot manipulation. The generated adaptations
outperform baseline naive designs, showcasing the potential
of our method to bridge the gap between human-designed
objects and robot capabilities. Moreover, our analysis of
design parameters highlights the importance of design di-
mensions in shaping the effectiveness of the adaptations.
Our findings pave the way for further advancements in robot

Fig. 6: Real world rollouts. 3D-printed adaptation parts,
outlined in the left-most frame in each row, allow the robot
to successfully complete each of the three tasks.

Design Bucket Drawer Box

No Adaptation 0/3 0/3 0/3
Primitive 3/3 3/3 3/3
Handle - 3/3 3/3
Mesh 3/3 0/3 3/3

TABLE I: Real world success rates on each task when de-
ploying object adaptations in the real world and performing
control with a Franka Panda robot.

ergonomics and the integration of robots into human-centric
environments, fostering improved human-robot collaboration
and expanding the range of objects in the world that robots
can effectively interact with.

ACKNOWLEDGMENTS

This work was in part supported by the Stanford Institute
for Human-Centered AI (HAI), the Center for Integrated Fa-
cility Engineering (CIFE), NSF RI #2211258 and #2338203,
and ONR MURI N00014-22-1-2740.

APPENDIX

VI. IMPLEMENTATION DETAILS

See Table II for a summary of hyperparameters used for
PPO training. We use an MLP to model the policy.

Parameter Setting
Max. Episode Steps 40

Pol. Hidden [1024, 1024]
Val. Hidden [128, 128]

Std 0.08208
Gamma 0.99
Lambda 0.95

Policy Learning Rate 1e-5
Value Learning Rate 1e-4

Policy Clip 0.2
Batch Size 160

TABLE II: Hyperparameters used for PPO training.



REFERENCES

[1] O. Kroemer, S. Niekum, and G. Konidaris, “A review of robot learning
for manipulation: Challenges, representations, and algorithms,” The
Journal of Machine Learning Research, vol. 22, no. 1, pp. 1395–1476,
2021.

[2] C. Bao, H. Xu, Y. Qin, and X. Wang, “Dexart: Benchmarking
generalizable dexterous manipulation with articulated objects,” arXiv
preprint arXiv:2305.05706, 2023.

[3] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martı́n-Martı́n,
C. Wang, G. Levine, M. Lingelbach, J. Sun, et al., “Behavior-1k: A
benchmark for embodied ai with 1,000 everyday activities and realistic
simulation,” in Conference on Robot Learning. PMLR, 2023, pp. 80–
93.

[4] H. Ha, S. Agrawal, and S. Song, “Fit2form: 3d generative model for
robot gripper form design,” in Conference on Robot Learning. PMLR,
2021, pp. 176–187.

[5] M. Kodnongbua, I. Good, Y. Lou, J. Lipton, and A. Schulz, “Compu-
tational design of passive grippers,” ACM Transactions on Graphics
(TOG), vol. 41, no. 4, pp. 2–12, 2022.

[6] Y. Wu, S. Kasewa, O. Groth, S. Salter, L. Sun, O. P. Jones, and
I. Posner, “Imagine that! leveraging emergent affordances for 3d tool
synthesis,” arXiv preprint arXiv:1909.13561, 2019.

[7] M. Li, R. Antonova, D. Sadigh, and J. Bohg, “Learning tool morphol-
ogy for contact-rich manipulation tasks with differentiable simulation,”
arXiv preprint arXiv:2211.02201, 2022.

[8] C. Wang, C. Pérez-D’Arpino, D. Xu, L. Fei-Fei, K. Liu, and
S. Savarese, “Co-gail: Learning diverse strategies for human-robot
collaboration,” in Conference on Robot Learning. PMLR, 2022, pp.
1279–1290.

[9] X. Chen, S. Coros, J. Mankoff, and S. E. Hudson, “Encore: 3d
printed augmentation of everyday objects with printed-over, affixed
and interlocked attachments,” in Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology, 2015, pp. 73–
82.

[10] X. Chen, J. Kim, J. Mankoff, T. Grossman, S. Coros, and S. E. Hudson,
“Reprise: A design tool for specifying, generating, and customizing
3d printable adaptations on everyday objects,” in Proceedings of the
29th Annual Symposium on User Interface Software and Technology,
2016, pp. 29–39.

[11] Y. Koyama, S. Sueda, E. Steinhardt, T. Igarashi, A. Shamir, and
W. Matusik, “Autoconnect: computational design of 3d-printable con-
nectors,” ACM Transactions on Graphics (TOG), vol. 34, no. 6, pp.
1–11, 2015.

[12] A. Teibrich, S. Mueller, F. Guimbretière, R. Kovacs, S. Neubert, and
P. Baudisch, “Patching physical objects,” in Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology,
2015, pp. 83–91.

[13] G. Fellows and A. Freivalds, “Ergonomics evaluation of a foam rubber
grip for tool handles,” Applied Ergonomics, vol. 22, no. 4, pp. 225–
230, 1991.

[14] I. Halim, R. Z. R. Umar, M. S. S. Mohamed, N. Ahmad, V. Pad-
manathan, and A. Saptari, “The influence of hand tool design on
hand grip strength: A review,” International Journal of Integrated
Engineering, vol. 11, no. 6, pp. 53–69, 2019.

[15] N. Melenbrink, C. Teeple, and J. Werfel, “A robot factors approach
to designing modular hardware,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2022,
pp. 3528–3535.

[16] R. Sosa, M. Montiel, E. B. Sandoval, R. E. Mohan, et al., “Robot
ergonomics: Towards human-centred and robot-inclusive design,” in
DS 92: Proceedings of the DESIGN 2018 15th International Design
Conference, 2018, pp. 2323–2334.

[17] Z. Xu and M. Cakmak, “Robot factors: an alternative approach for
closing the gap in human versus robot manipulation,” in Workshop on
Human versus Robot Grasping and Manipulation–How Can We Close
the Gap, 2014.

[18] J. R. Plaxen, “Adapt my world: Homemade adaptations for people
with disabilities,” Scoliosis, vol. 6, p. 14, 2023.

[19] S. Robitaille, The Illustrated Guide to Assistive Technology and
Devices: Tools and Gadgets for Living Independently: Easyread Super
Large 18pt Edition. ReadHowYouWant. com, 2010.

[20] T. Willkolmm, “Assistive technology solutions in minutes ii: Ordinary
items, extraordinary solutions,” 2013.

[21] Y. Yuan, Y. Song, Z. Luo, W. Sun, and K. Kitani, “Transform2act:
Learning a transform-and-control policy for efficient agent design,”
arXiv preprint arXiv:2110.03659, 2021.

[22] Z. Liu, S. Tian, M. Guo, C. Liu, and J. Wu, “Learning to design and
use tools for robotic manipulation,” in Conference on Robot Learning.
PMLR, 2023.

[23] N. Chavan-Dafle, A. Rodriguez, R. Paolini, B. Tang, S. Srinivasa,
M. Erdmann, M. T. Mason, I. Lundberg, H. Staab, and T. Fuhlbrigge,
“Extrinsic dexterity: In-hand manipulation with external forces,” in
Proceedings of (ICRA) International Conference on Robotics and
Automation, May 2014, pp. 1578 – 1585.

[24] W. Zhou and D. Held, “Learning to grasp the ungraspable with emer-
gent extrinsic dexterity,” in Conference on Robot Learning. PMLR,
2023, pp. 150–160.

[25] J. Li, A. Samoylov, J. Kim, and X. Chen, “Roman: Making every-
day objects robotically manipulable with 3d-printable add-on mecha-
nisms,” in Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems, 2022, pp. 1–17.

[26] L. Shao, T. Migimatsu, and J. Bohg, “Learning to scaffold the devel-
opment of robotic manipulation skills,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
5671–5677.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[28] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

[29] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang,
Y. Yuan, H. Wang, et al., “Sapien: A simulated part-based interac-
tive environment,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 11 097–11 107.

[30] K. Mamou, E. Lengyel, and A. Peters, “Volumetric hierarchical
approximate convex decomposition,” in Game Engine Gems 3. AK
Peters, 2016, pp. 141–158.

[31] E. Olson, “Apriltag: A robust and flexible visual fiducial system,”
in 2011 IEEE international conference on robotics and automation.
IEEE, 2011, pp. 3400–3407.


	Introduction
	Related Work
	Learning to Design Object Adaptations
	Problem definition
	Instantiating our framework

	Experiments
	Environments
	Task performance evaluation with and without adaptations
	Real world evaluation

	Conclusion
	Implementation Details
	References

